Study suggests that disrupting interaction between MYC and G9a could stop cancer growth. New technology has helped a TFRI-funded multidisciplinary research team identify how MYC – a key driver of human cancer – works, cracking open the possibility for new targets and treatments to stop it in its tracks.

Study shows benefit of vascular normalization in OV therapy for advanced epithelial ovarian cancer. Virologists at the University of Guelph have discovered that normalizing blood flow into tumours improves efficacy of oncolytic viruses, departing from long-held beliefs about the benefits of acute vascular shutdown.

Use of mTOR inhibitors increases efficacy of herpes virus as an oncolytic therapy. Combining a particular strain of the herpes virus with mTOR inhibitors improves viral replication within tumour cells with dysregulated protein synthesis, boosting the virus’ cancer-killing ability.

CEST MRI could measure patient response to chemotherapy less than 24 hours after first treatment. TFRI researchers at Sunnybrook hospital have found that CEST MRI technology can be used to detect cancer cell death in mice within 24 hours of receiving chemotherapy, much sooner than current methods.

Prostate cancer resource helps clinicians make better treatment decisions. A pan-Canadian prostate cancer group funded by the TFRI team has created a new tissue microarray (TMA)-based resource to assist clinicians and pathologists in validating biomarkers for patients with prostate cancer.

Will restoring stem cells to a fetal-like state provide T-ALL alternative treatment? A team of TFRI-funded scientists in Vancouver has discovered that restoring a signaling pathway that is prevalent in fetal stem cells but dormant in adult ones may provide an alternative treatment for acute T-cell lymphoblastic leukemia (T-ALL).

Group identifies genomic differences between long- and short-term survivors of deadly ovarian cancer. Researchers may be one step closer to personalizing treatments for patients with high-grade ovarian cancer thanks to a new study that revealed several clinical and genomic biomarkers that could help predict response to standard-of-care treatment.

Montreal-based team identifies new, targetable regulatory pathway in prostate cancer. The newly discovered pathway, SREBF1, was found to be directly responsible for controlling prostate cancer cell metabolism. It can be targeted with several pharmacological approaches already in use to treat other diseases.

Study shows promise of vascular normalization in OV therapy for advanced epithelial ovarian cancer. Virologists at the University of Guelph have discovered that normalizing blood flow into tumours improves efficacy of oncolytic viruses, departing from long-held beliefs about the benefits of acute vascular shutdown.

Montreal-based team identifies new, targetable regulatory pathway in prostate cancer. The newly discovered pathway, SREBF1, was found to be directly responsible for controlling prostate cancer cell metabolism. It can be targeted with several pharmacological approaches already in use to treat other diseases.

CEST MRI could measure patient response to chemotherapy less than 24 hours after first treatment. TFRI researchers at Sunnybrook hospital have found that CEST MRI technology can be used to detect cancer cell death in mice within 24 hours of receiving chemotherapy, much sooner than current methods.

Prostate cancer resource helps clinicians make better treatment decisions. A pan-Canadian prostate cancer group funded by the TFRI team has created a new tissue microarray (TMA)-based resource to assist clinicians and pathologists in validating biomarkers for patients with prostate cancer.

Will restoring stem cells to a fetal-like state provide T-ALL alternative treatment? A team of TFRI-funded scientists in Vancouver has discovered that restoring a signaling pathway that is prevalent in fetal stem cells but dormant in adult ones may provide an alternative treatment for acute T-cell lymphoblastic leukemia (T-ALL).

Study suggests that disrupting interaction between MYC and G9a could stop cancer growth. New technology has helped a TFRI-funded multidisciplinary research team identify how MYC – a key driver of human cancer – works, cracking open the possibility for new targets and treatments to stop it in its tracks.

Study shows benefit of vascular normalization in OV therapy for advanced epithelial ovarian cancer. Virologists at the University of Guelph have discovered that normalizing blood flow into tumours improves efficacy of oncolytic viruses, departing from long-held beliefs about the benefits of acute vascular shutdown.

Use of mTOR inhibitors increases efficacy of herpes virus as an oncolytic therapy. Combining a particular strain of the herpes virus with mTOR inhibitors improves viral replication within tumour cells with dysregulated protein synthesis, boosting the virus’ cancer-killing ability.

CEST MRI could measure patient response to chemotherapy less than 24 hours after first treatment. TFRI researchers at Sunnybrook hospital have found that CEST MRI technology can be used to detect cancer cell death in mice within 24 hours of receiving chemotherapy, much sooner than current methods.

Prostate cancer resource helps clinicians make better treatment decisions. A pan-Canadian prostate cancer group funded by the TFRI team has created a new tissue microarray (TMA)-based resource to assist clinicians and pathologists in validating biomarkers for patients with prostate cancer.

Will restoring stem cells to a fetal-like state provide T-ALL alternative treatment? A team of TFRI-funded scientists in Vancouver has discovered that restoring a signaling pathway that is prevalent in fetal stem cells but dormant in adult ones may provide an alternative treatment for acute T-cell lymphoblastic leukemia (T-ALL).

Study suggests that disrupting interaction between MYC and G9a could stop cancer growth. New technology has helped a TFRI-funded multidisciplinary research team identify how MYC – a key driver of human cancer – works, cracking open the possibility for new targets and treatments to stop it in its tracks.

Study shows benefit of vascular normalization in OV therapy for advanced epithelial ovarian cancer. Virologists at the University of Guelph have discovered that normalizing blood flow into tumours improves efficacy of oncolytic viruses, departing from long-held beliefs about the benefits of acute vascular shutdown.

Use of mTOR inhibitors increases efficacy of herpes virus as an oncolytic therapy. Combining a particular strain of the herpes virus with mTOR inhibitors improves viral replication within tumour cells with dysregulated protein synthesis, boosting the virus’ cancer-killing ability.

CEST MRI could measure patient response to chemotherapy less than 24 hours after first treatment. TFRI researchers at Sunnybrook hospital have found that CEST MRI technology can be used to detect cancer cell death in mice within 24 hours of receiving chemotherapy, much sooner than current methods.

Prostate cancer resource helps clinicians make better treatment decisions. A pan-Canadian prostate cancer group funded by the TFRI team has created a new tissue microarray (TMA)-based resource to assist clinicians and pathologists in validating biomarkers for patients with prostate cancer.